Ανάλυση πολυωνύμων σε γινόμενο παραγόντων
Ευκλείδης Α, Tome 2 (1985-1986), pp. 35-42
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{EUA_1985-1986_2_a87,
author = {K. \ensuremath{\Gamma}\ensuremath{\alpha}\ensuremath{\beta}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\lambda}\ensuremath{\eta}\ensuremath{\varsigma}},
title = {A\ensuremath{\nu}\ensuremath{\acute\alpha}\ensuremath{\lambda}\ensuremath{\upsilon}\ensuremath{\sigma}\ensuremath{\eta} \ensuremath{\pi}o\ensuremath{\lambda}\ensuremath{\upsilon}\ensuremath{\omega}\ensuremath{\nu}\ensuremath{\acute\upsilon}\ensuremath{\mu}\ensuremath{\omega}\ensuremath{\nu} \ensuremath{\sigma}\ensuremath{\varepsilon} \ensuremath{\gamma}\ensuremath{\iota}\ensuremath{\nu}\'{o}\ensuremath{\mu}\ensuremath{\varepsilon}\ensuremath{\nu}o \ensuremath{\pi}\ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\gamma}\'{o}\ensuremath{\nu}\ensuremath{\tau}\ensuremath{\omega}\ensuremath{\nu}},
journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} A},
pages = {35--42},
year = {1985-1986},
volume = {2},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/EUA_1985-1986_2_a87/}
}
Κ. Γαβρίλης. Ανάλυση πολυωνύμων σε γινόμενο παραγόντων. Ευκλείδης Α, Tome 2 (1985-1986), pp. 35-42. http://geodesic.mathdoc.fr/item/EUA_1985-1986_2_a87/