Convergence rates for $\ell^1$-regularization without the help of a variational inequality
Electronic transactions on numerical analysis, Tome 46 (2017), pp. 233-244.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that convergence rates for $\ell^1$-regularization can be obtained in an elementary way without requiring a classical source condition and without the help of a variational inequality. For the specific case of a diagonal operator we improve the convergence rate found in the literature and conduct numerical experiments that illustrate the predicted rate. The idea of the proof is rather generic and might be used in other settings as well.
Classification : 65J20, 47A52
Keywords: $\ell^1$-regularization, Tikhonov regularization, variational inequality, convergence rates
@article{ETNA_2017__46__a2,
     author = {Gerth, Daniel},
     title = {Convergence rates for $\ell^1$-regularization without the help of a variational inequality},
     journal = {Electronic transactions on numerical analysis},
     pages = {233--244},
     publisher = {mathdoc},
     volume = {46},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2017__46__a2/}
}
TY  - JOUR
AU  - Gerth, Daniel
TI  - Convergence rates for $\ell^1$-regularization without the help of a variational inequality
JO  - Electronic transactions on numerical analysis
PY  - 2017
SP  - 233
EP  - 244
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2017__46__a2/
LA  - en
ID  - ETNA_2017__46__a2
ER  - 
%0 Journal Article
%A Gerth, Daniel
%T Convergence rates for $\ell^1$-regularization without the help of a variational inequality
%J Electronic transactions on numerical analysis
%D 2017
%P 233-244
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2017__46__a2/
%G en
%F ETNA_2017__46__a2
Gerth, Daniel. Convergence rates for $\ell^1$-regularization without the help of a variational inequality. Electronic transactions on numerical analysis, Tome 46 (2017), pp. 233-244. http://geodesic.mathdoc.fr/item/ETNA_2017__46__a2/