The number of zeros of unilateral polynomials over coquaternions and related algebras
Electronic transactions on numerical analysis, Tome 46 (2017), pp. 55-70.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We have proved that unilateral polynomials over the nondivision algebras in $\mathbb{R}^4$ have at most $n(2n-1)$ zeros, when the polynomial has degree $n$. Moreover, we have created an algorithm for finding all zeros of polynomials over these algebras using a real polynomial of degree $2n$, called companion polynomial. The algebras in question are coquaternions, $\mathbb{H}_{\rm coq}$, nectarines, $\mathbb{H}_{\rm nec}$, and conectarines, $\mathbb{H}_{\rm con}$. Besides the isolated and hyperbolic zeros we introduce a new type of zeros, the $unexpected$ zeros. There is a formal algorithm, and there are numerical examples. In a tutorial section on similarity we show how to find the similarity transformation of two algebra elements to be known as similar, where a singular value decomposition of a certain real $4\times4$ matrix related to the two similar elements has to be applied. We show that there is a strong indication that an algorithm by Serôdio, Pereira, and Vitória [Comput. Math. Appl., 42 (2001), pp. 1229 -- 1237], designed for finding zeros of quaternionic polynomials, is also valid in the nondivision algebras in $\mathbb{R}^4$ and it produces -- -though with another technique -- -the same zeros as those proposed in this paper.
Classification : 12D10, 12E10, 15A66
Keywords: number of zeros of polynomials over nondivision algebras in $\mathbb{R}^4$, number of zeros of polynomials over coquaternions, number of zeros of polynomials over nectarines, number of zeros of polynomials over conectarines, unexpected zeros, computation of all zeros of polynomials over nondivision algebras in $\mathbb{R}^4$
@article{ETNA_2017__46__a10,
     author = {Janovsk\'a, Drahoslava and Opfer, Gerhard},
     title = {The number of zeros of unilateral polynomials over coquaternions and related algebras},
     journal = {Electronic transactions on numerical analysis},
     pages = {55--70},
     publisher = {mathdoc},
     volume = {46},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2017__46__a10/}
}
TY  - JOUR
AU  - Janovská, Drahoslava
AU  - Opfer, Gerhard
TI  - The number of zeros of unilateral polynomials over coquaternions and related algebras
JO  - Electronic transactions on numerical analysis
PY  - 2017
SP  - 55
EP  - 70
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2017__46__a10/
LA  - en
ID  - ETNA_2017__46__a10
ER  - 
%0 Journal Article
%A Janovská, Drahoslava
%A Opfer, Gerhard
%T The number of zeros of unilateral polynomials over coquaternions and related algebras
%J Electronic transactions on numerical analysis
%D 2017
%P 55-70
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2017__46__a10/
%G en
%F ETNA_2017__46__a10
Janovská, Drahoslava; Opfer, Gerhard. The number of zeros of unilateral polynomials over coquaternions and related algebras. Electronic transactions on numerical analysis, Tome 46 (2017), pp. 55-70. http://geodesic.mathdoc.fr/item/ETNA_2017__46__a10/