Variants of IDR with partial orthonormalization
Electronic transactions on numerical analysis, Tome 46 (2017), pp. 245-272.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present four variants of IDR$(s)$ that generate vectors such that consecutive blocks of $s+1$ vectors are orthonormal. IDR methods are based on tuning parameters: an initially chosen, so-called shadow space, and the so-called seed values. We collect possible choices for the seed values. We prove that under certain conditions all four variants are mathematically equivalent and discuss possible breakdowns. We give an error analysis of all four variants and a numerical comparison in the context of the solution of linear systems and eigenvalue problems.
Classification : 65F25, 65F10, 65F15, 65F50
Keywords: IDR, partial orthonormalization, minimum norm expansion, error analysis
@article{ETNA_2017__46__a1,
     author = {Zemke, Jens-Peter M.},
     title = {Variants of {IDR} with partial orthonormalization},
     journal = {Electronic transactions on numerical analysis},
     pages = {245--272},
     publisher = {mathdoc},
     volume = {46},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2017__46__a1/}
}
TY  - JOUR
AU  - Zemke, Jens-Peter M.
TI  - Variants of IDR with partial orthonormalization
JO  - Electronic transactions on numerical analysis
PY  - 2017
SP  - 245
EP  - 272
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2017__46__a1/
LA  - en
ID  - ETNA_2017__46__a1
ER  - 
%0 Journal Article
%A Zemke, Jens-Peter M.
%T Variants of IDR with partial orthonormalization
%J Electronic transactions on numerical analysis
%D 2017
%P 245-272
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2017__46__a1/
%G en
%F ETNA_2017__46__a1
Zemke, Jens-Peter M. Variants of IDR with partial orthonormalization. Electronic transactions on numerical analysis, Tome 46 (2017), pp. 245-272. http://geodesic.mathdoc.fr/item/ETNA_2017__46__a1/