A new geometric acceleration of the von Neumann-Halperin projection method
Electronic transactions on numerical analysis, Tome 45 (2016), pp. 330-341.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We develop a geometrical acceleration scheme for the von Neumann-Halperin alternating projection method, when applied to the problem of finding the projection of a point onto the intersection of a finite number of closed subspaces of a Hilbert space. We study the convergence properties of the new scheme. We also present some encouraging preliminary numerical results to illustrate the performance of the new scheme when compared with a well-known geometrical acceleration scheme, and also with the original von Neumann-Halperin alternating projection method.
Classification : 52A20, 46C07, 65H10, 47J25
Keywords: von Neumann-haperin algorithm, alternating projection methods, orthogonal projections, acceleration schemes
@article{ETNA_2016__45__a9,
     author = {L\'opez, Williams},
     title = {A new geometric acceleration of the von {Neumann-Halperin} projection method},
     journal = {Electronic transactions on numerical analysis},
     pages = {330--341},
     publisher = {mathdoc},
     volume = {45},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2016__45__a9/}
}
TY  - JOUR
AU  - López, Williams
TI  - A new geometric acceleration of the von Neumann-Halperin projection method
JO  - Electronic transactions on numerical analysis
PY  - 2016
SP  - 330
EP  - 341
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2016__45__a9/
LA  - en
ID  - ETNA_2016__45__a9
ER  - 
%0 Journal Article
%A López, Williams
%T A new geometric acceleration of the von Neumann-Halperin projection method
%J Electronic transactions on numerical analysis
%D 2016
%P 330-341
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2016__45__a9/
%G en
%F ETNA_2016__45__a9
López, Williams. A new geometric acceleration of the von Neumann-Halperin projection method. Electronic transactions on numerical analysis, Tome 45 (2016), pp. 330-341. http://geodesic.mathdoc.fr/item/ETNA_2016__45__a9/