A note on optimal rates for Lavrentiev regularization with adjoint source conditions
Electronic transactions on numerical analysis, Tome 45 (2016), pp. 420-423.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a recent paper, Plato, Mathé, and Hofmann proved several convergence rate results for Lavrentiev regularization. Especially, they also proved new results for the case when the exact solution $u$ of an ill-posed linear problem $Au=f$ satisfies the adjoint source condition $u\in\mathcal{R}({(A^*)^p}), 0 \frac{1}{2}$.
Classification : 47A52, 65J20
Keywords: Lavrentiev regularization, convergence rates
@article{ETNA_2016__45__a4,
     author = {Neubauer, Andreas},
     title = {A note on optimal rates for {Lavrentiev} regularization with adjoint source conditions},
     journal = {Electronic transactions on numerical analysis},
     pages = {420--423},
     publisher = {mathdoc},
     volume = {45},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2016__45__a4/}
}
TY  - JOUR
AU  - Neubauer, Andreas
TI  - A note on optimal rates for Lavrentiev regularization with adjoint source conditions
JO  - Electronic transactions on numerical analysis
PY  - 2016
SP  - 420
EP  - 423
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2016__45__a4/
LA  - en
ID  - ETNA_2016__45__a4
ER  - 
%0 Journal Article
%A Neubauer, Andreas
%T A note on optimal rates for Lavrentiev regularization with adjoint source conditions
%J Electronic transactions on numerical analysis
%D 2016
%P 420-423
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2016__45__a4/
%G en
%F ETNA_2016__45__a4
Neubauer, Andreas. A note on optimal rates for Lavrentiev regularization with adjoint source conditions. Electronic transactions on numerical analysis, Tome 45 (2016), pp. 420-423. http://geodesic.mathdoc.fr/item/ETNA_2016__45__a4/