Maps for global separation of roots
Electronic transactions on numerical analysis, Tome 45 (2016), pp. 241-256.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The global separation of the fixed-points of a real-valued function $g$ on an interval $D=[a,b]$ is considered by introducing the notions of quasi-step maps associated to $g$ and quasi-step maps educated by two predicates. The process of 'education' by the predicates is an a priori global technique which does not require initial guesses. The main properties of these maps are studied and the theoretical results are illustrated by some examples where appropriate quasi-step maps for Newton and Halley methods are applied.
Classification : 65H05, 65H20, 65S05
Keywords: step function, fixed-point, iteration map, Newton map, halley map, sieve of eratosthenes
@article{ETNA_2016__45__a13,
     author = {Gra\c{c}a, M\'ario M.},
     title = {Maps for global separation of roots},
     journal = {Electronic transactions on numerical analysis},
     pages = {241--256},
     publisher = {mathdoc},
     volume = {45},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2016__45__a13/}
}
TY  - JOUR
AU  - Graça, Mário M.
TI  - Maps for global separation of roots
JO  - Electronic transactions on numerical analysis
PY  - 2016
SP  - 241
EP  - 256
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2016__45__a13/
LA  - en
ID  - ETNA_2016__45__a13
ER  - 
%0 Journal Article
%A Graça, Mário M.
%T Maps for global separation of roots
%J Electronic transactions on numerical analysis
%D 2016
%P 241-256
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2016__45__a13/
%G en
%F ETNA_2016__45__a13
Graça, Mário M. Maps for global separation of roots. Electronic transactions on numerical analysis, Tome 45 (2016), pp. 241-256. http://geodesic.mathdoc.fr/item/ETNA_2016__45__a13/