A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method
Electronic transactions on numerical analysis, Tome 45 (2016), pp. 257-282.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For the first biharmonic problem a mixed variational formulation is introduced which is equivalent to a standard primal variational formulation on arbitrary polygonal domains. Based on a Helmholtz decomposition for an involved nonstandard Sobolev space it is shown that the biharmonic problem is equivalent to three (consecutively to solve) second-order elliptic problems. Two of them are Poisson problems, the remaining one is a planar linear elasticity problem with Poisson ratio 0. The Hellan-Herrmann-Johnson mixed method and a modified version are discussed within this framework. The unique feature of the proposed solution algorithms for the Hellan-Herrmann-Johnson method and its modified variant is that they are solely based on standard Lagrangian finite element spaces and standard multigrid methods for second-order elliptic problems and that they are of optimal complexity.
Classification : 65N22, 65F10, 65N55
Keywords: biharmonic equation, hellan-herrmann-Johnson method, mixed methods, Helmholtz decomposition
@article{ETNA_2016__45__a12,
     author = {Krendl, Wolfgang and Rafetseder, Katharina and Zulehner, Walter},
     title = {A decomposition result for biharmonic problems and the {Hellan-Herrmann-Johnson} method},
     journal = {Electronic transactions on numerical analysis},
     pages = {257--282},
     publisher = {mathdoc},
     volume = {45},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2016__45__a12/}
}
TY  - JOUR
AU  - Krendl, Wolfgang
AU  - Rafetseder, Katharina
AU  - Zulehner, Walter
TI  - A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method
JO  - Electronic transactions on numerical analysis
PY  - 2016
SP  - 257
EP  - 282
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2016__45__a12/
LA  - en
ID  - ETNA_2016__45__a12
ER  - 
%0 Journal Article
%A Krendl, Wolfgang
%A Rafetseder, Katharina
%A Zulehner, Walter
%T A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method
%J Electronic transactions on numerical analysis
%D 2016
%P 257-282
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2016__45__a12/
%G en
%F ETNA_2016__45__a12
Krendl, Wolfgang; Rafetseder, Katharina; Zulehner, Walter. A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method. Electronic transactions on numerical analysis, Tome 45 (2016), pp. 257-282. http://geodesic.mathdoc.fr/item/ETNA_2016__45__a12/