Revisiting the stability of computing the roots of a quadratic polynomial
Electronic transactions on numerical analysis, Tome 44 (2015), pp. 73-82.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show in this paper that the roots $x_1$ and $x_2$ of a scalar quadratic polynomial $ax^2+bx+c=0$ with real or complex coefficients $a, b,c$ can be computed in an element-wise mixed stable manner, measured in a relative sense. We also show that this is a stronger property than norm-wise backward stability but weaker than element-wise backward stability. We finally show that there does not exist any method that can compute the roots in an element-wise backward stable sense, which is also illustrated by some numerical experiments.
Classification : 65G30, 65G50, 65H04
Keywords: quadratic polynomial, roots, numerical stability
@article{ETNA_2015__44__a26,
     author = {Mastronardi, Nicola and Van Dooren, Paul},
     title = {Revisiting the stability of computing the roots of a quadratic polynomial},
     journal = {Electronic transactions on numerical analysis},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {44},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2015__44__a26/}
}
TY  - JOUR
AU  - Mastronardi, Nicola
AU  - Van Dooren, Paul
TI  - Revisiting the stability of computing the roots of a quadratic polynomial
JO  - Electronic transactions on numerical analysis
PY  - 2015
SP  - 73
EP  - 82
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2015__44__a26/
LA  - en
ID  - ETNA_2015__44__a26
ER  - 
%0 Journal Article
%A Mastronardi, Nicola
%A Van Dooren, Paul
%T Revisiting the stability of computing the roots of a quadratic polynomial
%J Electronic transactions on numerical analysis
%D 2015
%P 73-82
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2015__44__a26/
%G en
%F ETNA_2015__44__a26
Mastronardi, Nicola; Van Dooren, Paul. Revisiting the stability of computing the roots of a quadratic polynomial. Electronic transactions on numerical analysis, Tome 44 (2015), pp. 73-82. http://geodesic.mathdoc.fr/item/ETNA_2015__44__a26/