Voir la notice de l'article provenant de la source Electronic Library of Mathematics
@article{ETNA_2015__44__a22, author = {Feischl, Michael and F\"uhrer, Thomas and Karkulik, Michael and Melenk, J.Markus and Praetorius, Dirk}, title = {Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. {II:} {Hyper-singular} integral equation}, journal = {Electronic transactions on numerical analysis}, pages = {153--176}, publisher = {mathdoc}, volume = {44}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ETNA_2015__44__a22/} }
TY - JOUR AU - Feischl, Michael AU - Führer, Thomas AU - Karkulik, Michael AU - Melenk, J.Markus AU - Praetorius, Dirk TI - Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. II: Hyper-singular integral equation JO - Electronic transactions on numerical analysis PY - 2015 SP - 153 EP - 176 VL - 44 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ETNA_2015__44__a22/ LA - en ID - ETNA_2015__44__a22 ER -
%0 Journal Article %A Feischl, Michael %A Führer, Thomas %A Karkulik, Michael %A Melenk, J.Markus %A Praetorius, Dirk %T Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. II: Hyper-singular integral equation %J Electronic transactions on numerical analysis %D 2015 %P 153-176 %V 44 %I mathdoc %U http://geodesic.mathdoc.fr/item/ETNA_2015__44__a22/ %G en %F ETNA_2015__44__a22
Feischl, Michael; Führer, Thomas; Karkulik, Michael; Melenk, J.Markus; Praetorius, Dirk. Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. II: Hyper-singular integral equation. Electronic transactions on numerical analysis, Tome 44 (2015), pp. 153-176. http://geodesic.mathdoc.fr/item/ETNA_2015__44__a22/