Approximating optimal point configurations for multivariate polynomial interpolation
Electronic transactions on numerical analysis, Tome 42 (2014), pp. 41-63.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Efficient and effective algorithms are designed to compute the coordinates of nearly optimal points for multivariate polynomial interpolation on a general geometry. "Nearly optimal" refers to the property that the set of points has a Lebesgue constant near to the minimal Lebesgue constant with respect to multivariate polynomial interpolation on a finite region. The proposed algorithms range from cheap ones that produce point configurations with a reasonably low Lebesgue constant, to more expensive ones that can find point configurations for several two-dimensional shapes which have the lowest Lebesgue constant in comparison to currently known results.
Classification : 41A10, 65D05, 65D15, 65E05
Keywords: (nearly) optimal points, multivariate polynomial interpolation, Lebesgue constant, greedy add and update algorithms, weighted least squares, Vandermonde matrix, orthonormal basis
@article{ETNA_2014__42__a7,
     author = {van Barel, Marc and Humet, Matthias and Sorber, Laurent},
     title = {Approximating optimal point configurations for multivariate polynomial interpolation},
     journal = {Electronic transactions on numerical analysis},
     pages = {41--63},
     publisher = {mathdoc},
     volume = {42},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2014__42__a7/}
}
TY  - JOUR
AU  - van Barel, Marc
AU  - Humet, Matthias
AU  - Sorber, Laurent
TI  - Approximating optimal point configurations for multivariate polynomial interpolation
JO  - Electronic transactions on numerical analysis
PY  - 2014
SP  - 41
EP  - 63
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2014__42__a7/
LA  - en
ID  - ETNA_2014__42__a7
ER  - 
%0 Journal Article
%A van Barel, Marc
%A Humet, Matthias
%A Sorber, Laurent
%T Approximating optimal point configurations for multivariate polynomial interpolation
%J Electronic transactions on numerical analysis
%D 2014
%P 41-63
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2014__42__a7/
%G en
%F ETNA_2014__42__a7
van Barel, Marc; Humet, Matthias; Sorber, Laurent. Approximating optimal point configurations for multivariate polynomial interpolation. Electronic transactions on numerical analysis, Tome 42 (2014), pp. 41-63. http://geodesic.mathdoc.fr/item/ETNA_2014__42__a7/