Nonuniform sparse recovery with subgaussian matrices
Electronic transactions on numerical analysis, Tome 41 (2014), pp. 167-178.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information using efficient recovery methods such as $\ell_1$-minimization. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we focus on nonuniform recovery using subgaussian random matrices and $\ell_1$-minimization. We provide conditions on the number of samples in terms of the sparsity and the signal length which guarantee that a fixed sparse signal can be recovered with a random draw of the matrix using $\ell_1$-minimization. Our proofs are short and provide explicit and convenient constants.
Classification : 94A20, 60B20
Keywords: compressed sensing, sparse recovery, random matrices, $\ell_1$-minimization
@article{ETNA_2014__41__a15,
     author = {Ayaz, Ula\c{s} and Rauhut, Holger},
     title = {Nonuniform sparse recovery with subgaussian matrices},
     journal = {Electronic transactions on numerical analysis},
     pages = {167--178},
     publisher = {mathdoc},
     volume = {41},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2014__41__a15/}
}
TY  - JOUR
AU  - Ayaz, Ulaş
AU  - Rauhut, Holger
TI  - Nonuniform sparse recovery with subgaussian matrices
JO  - Electronic transactions on numerical analysis
PY  - 2014
SP  - 167
EP  - 178
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2014__41__a15/
LA  - en
ID  - ETNA_2014__41__a15
ER  - 
%0 Journal Article
%A Ayaz, Ulaş
%A Rauhut, Holger
%T Nonuniform sparse recovery with subgaussian matrices
%J Electronic transactions on numerical analysis
%D 2014
%P 167-178
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2014__41__a15/
%G en
%F ETNA_2014__41__a15
Ayaz, Ulaş; Rauhut, Holger. Nonuniform sparse recovery with subgaussian matrices. Electronic transactions on numerical analysis, Tome 41 (2014), pp. 167-178. http://geodesic.mathdoc.fr/item/ETNA_2014__41__a15/