A unified analysis of three finite element methods for the Monge-Ampère equation
Electronic transactions on numerical analysis, Tome 41 (2014), pp. 262-288.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It was recently shown in S. C. Brenner et al. [Math. Comp., 80 (2011), pp. 1979 -- 1995] that Lagrange finite elements can be used to approximate classical solutions of the Monge-Ampère equation, a fully nonlinear second order PDE. We expand on these results and give a unified analysis for many finite element methods satisfying some mild structure conditions in two and three dimensions. After proving some abstract results, we lay out a blueprint to construct various finite element methods that inherit these conditions and show how $C^1$ finite element methods, $C^0$ finite element methods, and discontinuous Galerkin methods fit into the framework.
Classification : 65N30, 65N12, 35J60
Keywords: fully nonlinear pdes, Monge-Ampère equation, finite element methods, discontinuous Galerkin methods
@article{ETNA_2014__41__a11,
     author = {Neilan, Michael},
     title = {A unified analysis of three finite element methods for the {Monge-Amp\`ere} equation},
     journal = {Electronic transactions on numerical analysis},
     pages = {262--288},
     publisher = {mathdoc},
     volume = {41},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2014__41__a11/}
}
TY  - JOUR
AU  - Neilan, Michael
TI  - A unified analysis of three finite element methods for the Monge-Ampère equation
JO  - Electronic transactions on numerical analysis
PY  - 2014
SP  - 262
EP  - 288
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2014__41__a11/
LA  - en
ID  - ETNA_2014__41__a11
ER  - 
%0 Journal Article
%A Neilan, Michael
%T A unified analysis of three finite element methods for the Monge-Ampère equation
%J Electronic transactions on numerical analysis
%D 2014
%P 262-288
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2014__41__a11/
%G en
%F ETNA_2014__41__a11
Neilan, Michael. A unified analysis of three finite element methods for the Monge-Ampère equation. Electronic transactions on numerical analysis, Tome 41 (2014), pp. 262-288. http://geodesic.mathdoc.fr/item/ETNA_2014__41__a11/