Counting eigenvalues in domains of the complex field
Electronic transactions on numerical analysis, Tome 40 (2013), pp. 1-16.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A procedure for counting the number of eigenvalues of a matrix in a region surrounded by a closed curve is presented. It is based on the application of the residual theorem. The quadrature is performed by evaluating the principal argument of the logarithm of a function. A strategy is proposed for selecting a path length that insures that the same branch of the logarithm is followed during the integration. Numerical tests are reported for matrices obtained from conventional matrix test sets.
Classification : 65F15, 65F40, 65F50, 65E05
Keywords: eigenvalue, resolvent, determinant, complex logarithm
@article{ETNA_2013__40__a25,
     author = {Kamgnia, Emmanuel and Philippe, Bernard},
     title = {Counting eigenvalues in domains of the complex field},
     journal = {Electronic transactions on numerical analysis},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {40},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2013__40__a25/}
}
TY  - JOUR
AU  - Kamgnia, Emmanuel
AU  - Philippe, Bernard
TI  - Counting eigenvalues in domains of the complex field
JO  - Electronic transactions on numerical analysis
PY  - 2013
SP  - 1
EP  - 16
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2013__40__a25/
LA  - en
ID  - ETNA_2013__40__a25
ER  - 
%0 Journal Article
%A Kamgnia, Emmanuel
%A Philippe, Bernard
%T Counting eigenvalues in domains of the complex field
%J Electronic transactions on numerical analysis
%D 2013
%P 1-16
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2013__40__a25/
%G en
%F ETNA_2013__40__a25
Kamgnia, Emmanuel; Philippe, Bernard. Counting eigenvalues in domains of the complex field. Electronic transactions on numerical analysis, Tome 40 (2013), pp. 1-16. http://geodesic.mathdoc.fr/item/ETNA_2013__40__a25/