Chebyshev acceleration of the GeneRank algorithm
Electronic transactions on numerical analysis, Tome 40 (2013), pp. 311-320.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The ranking of genes plays an important role in biomedical research. The GeneRank method of Morrison et al. [BMC Bioinformatics, 6:233 (2005)] ranks genes based on the results of microarray experiments combined with gene expression information, for example from gene annotations. The algorithm is a variant of the well known PageRank iteration, and can be formulated as the solution of a large, sparse linear system. Here we show that classical Chebyshev semi-iteration can considerably speed up the convergence of GeneRank, outperforming other acceleration schemes such as conjugate gradients.
Classification : 65F10, 65F50, 92D20
Keywords: generank, computational genomics, Chebyshev semi-iteration, polynomials of best uniform approximation, conjugate gradients
@article{ETNA_2013__40__a10,
     author = {Benzi, Michele and Kuhlemann, Verena},
     title = {Chebyshev acceleration of the {GeneRank} algorithm},
     journal = {Electronic transactions on numerical analysis},
     pages = {311--320},
     publisher = {mathdoc},
     volume = {40},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2013__40__a10/}
}
TY  - JOUR
AU  - Benzi, Michele
AU  - Kuhlemann, Verena
TI  - Chebyshev acceleration of the GeneRank algorithm
JO  - Electronic transactions on numerical analysis
PY  - 2013
SP  - 311
EP  - 320
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2013__40__a10/
LA  - en
ID  - ETNA_2013__40__a10
ER  - 
%0 Journal Article
%A Benzi, Michele
%A Kuhlemann, Verena
%T Chebyshev acceleration of the GeneRank algorithm
%J Electronic transactions on numerical analysis
%D 2013
%P 311-320
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2013__40__a10/
%G en
%F ETNA_2013__40__a10
Benzi, Michele; Kuhlemann, Verena. Chebyshev acceleration of the GeneRank algorithm. Electronic transactions on numerical analysis, Tome 40 (2013), pp. 311-320. http://geodesic.mathdoc.fr/item/ETNA_2013__40__a10/