Fejér orthogonal polynomials and rational modification of a measure on the unit circle
Electronic transactions on numerical analysis, Tome 39 (2012), pp. 340-352.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Relations between the monic orthogonal polynomials associated with a measure on the unit circle and the monic orthogonal polynomials associated with a rational modification of this measure are known. In this paper we deal with some generalization in order to give an explicit expression of the Fejér orthogonal polynomials on the unit circle. Furthermore we give a simple and efficient algorithm to compute the monic orthogonal polynomials associated with a rational modification of a measure.
Classification : 42C05
Keywords: Fejér kernel, orthogonal polynomials, rational modification of a measure
@article{ETNA_2012__39__a6,
     author = {Santos-Le\'on, Juan-Carlos},
     title = {Fej\'er orthogonal polynomials and rational modification of a measure on the unit circle},
     journal = {Electronic transactions on numerical analysis},
     pages = {340--352},
     publisher = {mathdoc},
     volume = {39},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2012__39__a6/}
}
TY  - JOUR
AU  - Santos-León, Juan-Carlos
TI  - Fejér orthogonal polynomials and rational modification of a measure on the unit circle
JO  - Electronic transactions on numerical analysis
PY  - 2012
SP  - 340
EP  - 352
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2012__39__a6/
LA  - en
ID  - ETNA_2012__39__a6
ER  - 
%0 Journal Article
%A Santos-León, Juan-Carlos
%T Fejér orthogonal polynomials and rational modification of a measure on the unit circle
%J Electronic transactions on numerical analysis
%D 2012
%P 340-352
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2012__39__a6/
%G en
%F ETNA_2012__39__a6
Santos-León, Juan-Carlos. Fejér orthogonal polynomials and rational modification of a measure on the unit circle. Electronic transactions on numerical analysis, Tome 39 (2012), pp. 340-352. http://geodesic.mathdoc.fr/item/ETNA_2012__39__a6/