Integrating oscillatory functions in Matlab. II.
Electronic transactions on numerical analysis, Tome 39 (2012), pp. 403-413.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a previous study we developed a MATLAB program for the approximation of $\int_a^b f(x)\,e^{i \omega x}\,dx$ when $\omega$ is large. Here we study the more difficult task of approximating $\int_a^b f(x)\,e^{i g(x)}\,dx$ when $g(x)$ is large on $[a,b]$. We propose a fundamentally different approach to the task -- - backward error analysis. Other approaches require users to supply the location and nature of critical points of $g(x)$ and may require $g^\prime(x)$. With this new approach, the program quadgF merely asks a user to define the problem, i.e., to supply $f(x), g(x), [a,b]$, and specify the desired accuracy. Though intended only for modest relative accuracy, quadgF is very easy to use and solves effectively a large class of problems. Of some independent interest is a vectorized MATLAB function for evaluating Fresnel sine and cosine integrals.
Classification : 65D30, 65D32, 65D07
Keywords: quadrature, oscillatory integrand, regular oscillation, irregular oscillation, backward error analysis, filon, fresnel integrals, Matlab
@article{ETNA_2012__39__a3,
     author = {Shampine, L.F.},
     title = {Integrating oscillatory functions in {Matlab.} {II.}},
     journal = {Electronic transactions on numerical analysis},
     pages = {403--413},
     publisher = {mathdoc},
     volume = {39},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2012__39__a3/}
}
TY  - JOUR
AU  - Shampine, L.F.
TI  - Integrating oscillatory functions in Matlab. II.
JO  - Electronic transactions on numerical analysis
PY  - 2012
SP  - 403
EP  - 413
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2012__39__a3/
LA  - en
ID  - ETNA_2012__39__a3
ER  - 
%0 Journal Article
%A Shampine, L.F.
%T Integrating oscillatory functions in Matlab. II.
%J Electronic transactions on numerical analysis
%D 2012
%P 403-413
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2012__39__a3/
%G en
%F ETNA_2012__39__a3
Shampine, L.F. Integrating oscillatory functions in Matlab. II.. Electronic transactions on numerical analysis, Tome 39 (2012), pp. 403-413. http://geodesic.mathdoc.fr/item/ETNA_2012__39__a3/