Trigonometric Gaussian quadrature on subintervals of the period
Electronic transactions on numerical analysis, Tome 39 (2012), pp. 102-112.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We construct a quadrature formula with $n+1$ angles and positive weights which is exact in the $(2n+1)$-dimensional space of trigonometric polynomials of degree $\leq n$ on intervals with length smaller than $2\pi$. We apply the formula to the construction of product Gaussian quadrature rules on circular sectors, zones, segments, and lenses.
Classification : 65D32
Keywords: trigonometric Gaussian quadrature, subintervals of the period, product Gaussian quadrature, circular sectors, circular zones, circular segments, circular lenses
@article{ETNA_2012__39__a19,
     author = {Da Fies, Gaspare and Vianello, Marco},
     title = {Trigonometric {Gaussian} quadrature on subintervals of the period},
     journal = {Electronic transactions on numerical analysis},
     pages = {102--112},
     publisher = {mathdoc},
     volume = {39},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2012__39__a19/}
}
TY  - JOUR
AU  - Da Fies, Gaspare
AU  - Vianello, Marco
TI  - Trigonometric Gaussian quadrature on subintervals of the period
JO  - Electronic transactions on numerical analysis
PY  - 2012
SP  - 102
EP  - 112
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2012__39__a19/
LA  - en
ID  - ETNA_2012__39__a19
ER  - 
%0 Journal Article
%A Da Fies, Gaspare
%A Vianello, Marco
%T Trigonometric Gaussian quadrature on subintervals of the period
%J Electronic transactions on numerical analysis
%D 2012
%P 102-112
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2012__39__a19/
%G en
%F ETNA_2012__39__a19
Da Fies, Gaspare; Vianello, Marco. Trigonometric Gaussian quadrature on subintervals of the period. Electronic transactions on numerical analysis, Tome 39 (2012), pp. 102-112. http://geodesic.mathdoc.fr/item/ETNA_2012__39__a19/