Creating domain mappings
Electronic transactions on numerical analysis, Tome 39 (2012), pp. 202-230.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Consider being given a mapping $\varphi:S^{d-1}\% \overset{1-1}{\underset{onto}{\longrightarrow}}\partial\Omega$, with $\partial\Omega$ the $\left( d-1\right) $-dimensional smooth boundary surface for a bounded open simply-connected region $\Omega$ in $\mathbb{R}\% ^{d}, d\geq2$. We consider the problem of constructing an extension $\Phi:\overline{B}_{d}\overset{1-1}{\underset{onto}{\longrightarrow}}\% \overline{\Omega}$ with $B_{d}$ the open unit ball in $\mathbb{R}^{d}$. The mapping is also required to be continuously differentiable with a non-singular Jacobian matrix at all points. We discuss ways of obtaining initial guesses for such a mapping $\Phi$ and of then improving it by an iteration method.
Classification : 65D99
Keywords: domain mapping, multivariate polynomial, constrained minimization, nonlinear iteration
@article{ETNA_2012__39__a14,
     author = {Atkinson, Kendall and Hansen, Olaf},
     title = {Creating domain mappings},
     journal = {Electronic transactions on numerical analysis},
     pages = {202--230},
     publisher = {mathdoc},
     volume = {39},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2012__39__a14/}
}
TY  - JOUR
AU  - Atkinson, Kendall
AU  - Hansen, Olaf
TI  - Creating domain mappings
JO  - Electronic transactions on numerical analysis
PY  - 2012
SP  - 202
EP  - 230
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2012__39__a14/
LA  - en
ID  - ETNA_2012__39__a14
ER  - 
%0 Journal Article
%A Atkinson, Kendall
%A Hansen, Olaf
%T Creating domain mappings
%J Electronic transactions on numerical analysis
%D 2012
%P 202-230
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2012__39__a14/
%G en
%F ETNA_2012__39__a14
Atkinson, Kendall; Hansen, Olaf. Creating domain mappings. Electronic transactions on numerical analysis, Tome 39 (2012), pp. 202-230. http://geodesic.mathdoc.fr/item/ETNA_2012__39__a14/