$P$-regular splitting iterative methods for non-Hermitian positive definite linear systems
Electronic transactions on numerical analysis, Tome 36 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the convergence of P -regular splitting iterative methods for non-Hermitian positive definite linear systems. Our main result is that P -regular splittings of the form A = M - N , where N = N * , are convergent. Natural examples of splittings satisfying the convergence conditions are constructed, and numerical experiments are performed to illustrate the convergence results obtained.
Classification : 65F10, 15A15, 15F10
Keywords: non-Hermitian positive definite matrices, P -regular splitting, convergence, SOR methods, preconditioned GMRES
@article{ETNA_2010__36__a8,
     author = {Zhang, Cheng-Yi and Benzi, Michele},
     title = {$P$-regular splitting iterative methods for {non-Hermitian} positive definite linear systems},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2010__36__a8/}
}
TY  - JOUR
AU  - Zhang, Cheng-Yi
AU  - Benzi, Michele
TI  - $P$-regular splitting iterative methods for non-Hermitian positive definite linear systems
JO  - Electronic transactions on numerical analysis
PY  - 2010
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2010__36__a8/
LA  - en
ID  - ETNA_2010__36__a8
ER  - 
%0 Journal Article
%A Zhang, Cheng-Yi
%A Benzi, Michele
%T $P$-regular splitting iterative methods for non-Hermitian positive definite linear systems
%J Electronic transactions on numerical analysis
%D 2010
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2010__36__a8/
%G en
%F ETNA_2010__36__a8
Zhang, Cheng-Yi; Benzi, Michele. $P$-regular splitting iterative methods for non-Hermitian positive definite linear systems. Electronic transactions on numerical analysis, Tome 36 (2010). http://geodesic.mathdoc.fr/item/ETNA_2010__36__a8/