On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures
Electronic transactions on numerical analysis, Tome 36 (2010).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we consider an unsymmetric eigenvalue problem occurring in fluid-solid vibrations. We present some properties of this eigenvalue problem and a Rayleigh functional which allows for a min-maxcharacterization. With this Rayleigh functional the one-sided Rayleigh functional iteration converges cubically, and a Jacobi-Davidson-type method improves the local and global convergence properties.
Classification : 65F15
Keywords: eigenvalue, variational characterization, minmax principle, fluid-solid interaction, Rayleigh quotient iteration, Jacobi-davidson method
@article{ETNA_2010__36__a4,
     author = {Stammberger, Markus and Voss, Heinrich},
     title = {On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2010__36__a4/}
}
TY  - JOUR
AU  - Stammberger, Markus
AU  - Voss, Heinrich
TI  - On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures
JO  - Electronic transactions on numerical analysis
PY  - 2010
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2010__36__a4/
LA  - en
ID  - ETNA_2010__36__a4
ER  - 
%0 Journal Article
%A Stammberger, Markus
%A Voss, Heinrich
%T On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures
%J Electronic transactions on numerical analysis
%D 2010
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2010__36__a4/
%G en
%F ETNA_2010__36__a4
Stammberger, Markus; Voss, Heinrich. On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures. Electronic transactions on numerical analysis, Tome 36 (2010). http://geodesic.mathdoc.fr/item/ETNA_2010__36__a4/