Gaussian direct quadrature methods for double delay Volterra integral equations
Electronic transactions on numerical analysis, Tome 35 (2009), pp. 201-216.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we consider Volterra integral equations with two constant delays. We construct Direct Quadrature methods based on Gaussian formulas, combined with a suitable interpolation technique. We study the convergence and the stability properties of the methods and we carry out some numerical experiments that confirm our theoretical results.
Classification : 65R20
Keywords: Volterra integral equations, direct quadrature method, Gaussian quadrature formulas, convergence, stability
@article{ETNA_2009__35__a3,
     author = {Cardone, Angelamaria and Del Prete, Ida and Nitsch, Claudia},
     title = {Gaussian direct quadrature methods for double delay {Volterra} integral equations},
     journal = {Electronic transactions on numerical analysis},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {35},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2009__35__a3/}
}
TY  - JOUR
AU  - Cardone, Angelamaria
AU  - Del Prete, Ida
AU  - Nitsch, Claudia
TI  - Gaussian direct quadrature methods for double delay Volterra integral equations
JO  - Electronic transactions on numerical analysis
PY  - 2009
SP  - 201
EP  - 216
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2009__35__a3/
LA  - en
ID  - ETNA_2009__35__a3
ER  - 
%0 Journal Article
%A Cardone, Angelamaria
%A Del Prete, Ida
%A Nitsch, Claudia
%T Gaussian direct quadrature methods for double delay Volterra integral equations
%J Electronic transactions on numerical analysis
%D 2009
%P 201-216
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2009__35__a3/
%G en
%F ETNA_2009__35__a3
Cardone, Angelamaria; Del Prete, Ida; Nitsch, Claudia. Gaussian direct quadrature methods for double delay Volterra integral equations. Electronic transactions on numerical analysis, Tome 35 (2009), pp. 201-216. http://geodesic.mathdoc.fr/item/ETNA_2009__35__a3/