A note on numerically consistent initial values for high index differential-algebraic equations
Electronic transactions on numerical analysis, Tome 34 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution can have gross errors in the first few steps, even if the initial values are equal to the exact solution and even if the stepsize is kept constant. This raises the question of what are $consistent$ initial values for the difference equations. Here we study how to change the exact initial values into what we call $numerically consistent $initial values for the implicit Euler method.
Classification : 65L05
Keywords: high index differential-algebraic equations, consistent initial values
@article{ETNA_2009__34__a14,
     author = {Ar\'evalo, Carmen},
     title = {A note on numerically consistent initial values for high index differential-algebraic equations},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2009__34__a14/}
}
TY  - JOUR
AU  - Arévalo, Carmen
TI  - A note on numerically consistent initial values for high index differential-algebraic equations
JO  - Electronic transactions on numerical analysis
PY  - 2009
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2009__34__a14/
LA  - en
ID  - ETNA_2009__34__a14
ER  - 
%0 Journal Article
%A Arévalo, Carmen
%T A note on numerically consistent initial values for high index differential-algebraic equations
%J Electronic transactions on numerical analysis
%D 2009
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2009__34__a14/
%G en
%F ETNA_2009__34__a14
Arévalo, Carmen. A note on numerically consistent initial values for high index differential-algebraic equations. Electronic transactions on numerical analysis, Tome 34 (2009). http://geodesic.mathdoc.fr/item/ETNA_2009__34__a14/