Numerical bifurcation of separable parameterized equations
Electronic transactions on numerical analysis, Tome 34 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Many applications give rise to separable parameterized equations, which have the form $A(y, \mu )z + b(y, \mu ) = 0$, where z $\in $RN , y $\in $Rn, $\mu \in $Rs, and the (N + n) $\times N$ matrix $A(y, \mu )$ and (N + n) vector $b(y, \mu )$ are C2-Lipschitzian in $(y, \mu ) \in \Omega \subset $Rn $\times $Rs. We present a technique which reduces the original equation to the form f $(y, \mu ) = 0$, where f : $\Omega \rightarrow $Rn is C2-Lipschitzian in $(y, \mu )$. This reduces the dimension of the space within which the bifurcation relation occurs. We derive expressions required to implement methods to solve the reduced equation. Numerical examples illustrate the use of the technique.
Classification : 65P30, 65H10, 37G10, 34C23
Keywords: separable parameterized equations, singular value decomposition, static bifurcation points, extended systems, Newton's method, LU factorization, curve switching and tracking
@article{ETNA_2009__34__a12,
     author = {Shen, Yun-Qiu and Ypma, Tjalling J.},
     title = {Numerical bifurcation of separable parameterized equations},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2009__34__a12/}
}
TY  - JOUR
AU  - Shen, Yun-Qiu
AU  - Ypma, Tjalling J.
TI  - Numerical bifurcation of separable parameterized equations
JO  - Electronic transactions on numerical analysis
PY  - 2009
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2009__34__a12/
LA  - en
ID  - ETNA_2009__34__a12
ER  - 
%0 Journal Article
%A Shen, Yun-Qiu
%A Ypma, Tjalling J.
%T Numerical bifurcation of separable parameterized equations
%J Electronic transactions on numerical analysis
%D 2009
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2009__34__a12/
%G en
%F ETNA_2009__34__a12
Shen, Yun-Qiu; Ypma, Tjalling J. Numerical bifurcation of separable parameterized equations. Electronic transactions on numerical analysis, Tome 34 (2009). http://geodesic.mathdoc.fr/item/ETNA_2009__34__a12/