A reduced basis method for evolution schemes with parameter-dependent explicit operators
Electronic transactions on numerical analysis, Tome 32 (2008), pp. 145-161.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: During the last decades, reduced basis (RB) methods have been developed to a wide methodology for model reduction of problems that are governed by parametrized partial differential equations (P DEs ). In particular $$###$$ equations of elliptic and parabolic type for linear, low degree polynomial or monotonic nonlinearities have been treated successfully by RB methods using finite element schemes. Due to the characteristic offline-online decomposition, the reduced models often become suitable for a multi-query or real-time setting, where simulation results, such as field-variables or output estimates, can be approximated reliably and rapidly for varying parameters. In the current study, we address a certain class of time-dependent evolution schemes with explicit discretization operators that are arbitrarily parameter dependent. We extend the RB methodology to these cases by applying the $empiricalinterpolation$ method to localized discretization operators. The main technical ingredients are: (i) generation of a $collateral reduced basis$ modelling the effects of the discretization operator under parameter variations in the offlinephase and (ii) an online simulation scheme based on a numerical subgrid and localized evaluations of the evolution operator. We formulate an a-posteriori error estimator for quantification of the resulting reduced simulation error.
Classification : 76M12, 65M15, 35L90, 35K90, 76R99
Keywords: model reduction, reduced basis methods, parameter dependent explicit operators, empirical interpolation, a-posteriori error estimates
@article{ETNA_2008__32__a3,
     author = {Haasdonk, B. and Ohlberger, M. and Rozza, G.},
     title = {A reduced basis method for evolution schemes with parameter-dependent explicit operators},
     journal = {Electronic transactions on numerical analysis},
     pages = {145--161},
     publisher = {mathdoc},
     volume = {32},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__32__a3/}
}
TY  - JOUR
AU  - Haasdonk, B.
AU  - Ohlberger, M.
AU  - Rozza, G.
TI  - A reduced basis method for evolution schemes with parameter-dependent explicit operators
JO  - Electronic transactions on numerical analysis
PY  - 2008
SP  - 145
EP  - 161
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__32__a3/
LA  - en
ID  - ETNA_2008__32__a3
ER  - 
%0 Journal Article
%A Haasdonk, B.
%A Ohlberger, M.
%A Rozza, G.
%T A reduced basis method for evolution schemes with parameter-dependent explicit operators
%J Electronic transactions on numerical analysis
%D 2008
%P 145-161
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__32__a3/
%G en
%F ETNA_2008__32__a3
Haasdonk, B.; Ohlberger, M.; Rozza, G. A reduced basis method for evolution schemes with parameter-dependent explicit operators. Electronic transactions on numerical analysis, Tome 32 (2008), pp. 145-161. http://geodesic.mathdoc.fr/item/ETNA_2008__32__a3/