Space adaptive finite element methods for dynamic obstacle problems
Electronic transactions on numerical analysis, Tome 32 (2008), pp. 162-172.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The necessity to approximate dynamic contact problems arises in many engineering processes. Be- cause of the local effects in the contact zone, adaptive techniques are suited to improve the finite element discretisation of such problems. In this article, the Newmark method in time and finite elements in space are used to approximate the solution numerically. A spatial error estimator is derived from the semidiscretised problem. The approach relies on an auxiliary problem, which is a variational equation. An adaptive refinement process is based on this error control. Numerical results illustrate the performance of the presented method.
Classification : 35L85, 65M50, 65M60
Keywords: dynamic obstacle problem, a posteriori errror estimation, mesh refinement, finite element method
@article{ETNA_2008__32__a2,
     author = {Blum, Heribert and Rademacher, Andreas and Schr\"oder, Andreas},
     title = {Space adaptive finite element methods for dynamic obstacle problems},
     journal = {Electronic transactions on numerical analysis},
     pages = {162--172},
     publisher = {mathdoc},
     volume = {32},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__32__a2/}
}
TY  - JOUR
AU  - Blum, Heribert
AU  - Rademacher, Andreas
AU  - Schröder, Andreas
TI  - Space adaptive finite element methods for dynamic obstacle problems
JO  - Electronic transactions on numerical analysis
PY  - 2008
SP  - 162
EP  - 172
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__32__a2/
LA  - en
ID  - ETNA_2008__32__a2
ER  - 
%0 Journal Article
%A Blum, Heribert
%A Rademacher, Andreas
%A Schröder, Andreas
%T Space adaptive finite element methods for dynamic obstacle problems
%J Electronic transactions on numerical analysis
%D 2008
%P 162-172
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__32__a2/
%G en
%F ETNA_2008__32__a2
Blum, Heribert; Rademacher, Andreas; Schröder, Andreas. Space adaptive finite element methods for dynamic obstacle problems. Electronic transactions on numerical analysis, Tome 32 (2008), pp. 162-172. http://geodesic.mathdoc.fr/item/ETNA_2008__32__a2/