Nitsche mortaring for parabolic initial-boundary value problems
Electronic transactions on numerical analysis, Tome 32 (2008), pp. 190-209.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper is concerned with a method for the numerical solution of parabolic initial-boundary value problems in two-dimensional polygonal domains with or without reentrant corners. The Nitsche finite element $\sterling $method (as a mortar method) is applied for the discretization in space, i.e., non-matching meshes are used. For the discretization in time, the backward Euler method is employed. The rate of convergence in some -like norm $$#############$$ and in the -norm is proved for the semidiscrete as well as for the fully discrete problem. In order to improve the §$\copyright \ddot $accuracy of the method in the presence of singularities arising in case of non-convex domains, meshes with local grading near the reentrant corner are employed for the Nitsche finite element method. Numerical results illustrate the approach and confirm the theoretically expected convergence rates.
Classification : 65M60, 65N30
Keywords: parabolic problem, corner singularity, semidiscrete finite element method, non-matching meshes, nitsche mortaring, fully discrete method
@article{ETNA_2008__32__a0,
     author = {Heinrich, Bernd and Jung, Beate},
     title = {Nitsche mortaring for parabolic initial-boundary value problems},
     journal = {Electronic transactions on numerical analysis},
     pages = {190--209},
     publisher = {mathdoc},
     volume = {32},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__32__a0/}
}
TY  - JOUR
AU  - Heinrich, Bernd
AU  - Jung, Beate
TI  - Nitsche mortaring for parabolic initial-boundary value problems
JO  - Electronic transactions on numerical analysis
PY  - 2008
SP  - 190
EP  - 209
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__32__a0/
LA  - en
ID  - ETNA_2008__32__a0
ER  - 
%0 Journal Article
%A Heinrich, Bernd
%A Jung, Beate
%T Nitsche mortaring for parabolic initial-boundary value problems
%J Electronic transactions on numerical analysis
%D 2008
%P 190-209
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__32__a0/
%G en
%F ETNA_2008__32__a0
Heinrich, Bernd; Jung, Beate. Nitsche mortaring for parabolic initial-boundary value problems. Electronic transactions on numerical analysis, Tome 32 (2008), pp. 190-209. http://geodesic.mathdoc.fr/item/ETNA_2008__32__a0/