A counterexample for characterizing an invariant subspace of a matrix
Electronic transactions on numerical analysis, Tome 31 (2008), pp. 295-305.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: As an alternative to Newton's method for computing a simple eigenvalue and corresponding eigenvectors of a nonnormal matrix in a stable way, an approach based on singularity theory has been proposed by Schwetlick/L$\ddot $osche [Z. Angew. Math. Mech., 80 (2000), pp. 9-25]. In this paper, by constructing a counterexample with a singular linear block operator, it is shown that a straightforward extension of this technique to the computation of invariant subspaces of dimension p > 1 will not work, in general. Finding this counterexample required a detailed study of the linear block operator.
Classification : 65F15
Keywords: eigenvalue problem, simple invariant subspace, block Newton method, block Rayleigh quotient iteration
@article{ETNA_2008__31__a5,
     author = {Schwetlick, Hubert and Schreiber, Kathrin},
     title = {A counterexample for characterizing an invariant subspace of a matrix},
     journal = {Electronic transactions on numerical analysis},
     pages = {295--305},
     publisher = {mathdoc},
     volume = {31},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__31__a5/}
}
TY  - JOUR
AU  - Schwetlick, Hubert
AU  - Schreiber, Kathrin
TI  - A counterexample for characterizing an invariant subspace of a matrix
JO  - Electronic transactions on numerical analysis
PY  - 2008
SP  - 295
EP  - 305
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__31__a5/
LA  - en
ID  - ETNA_2008__31__a5
ER  - 
%0 Journal Article
%A Schwetlick, Hubert
%A Schreiber, Kathrin
%T A counterexample for characterizing an invariant subspace of a matrix
%J Electronic transactions on numerical analysis
%D 2008
%P 295-305
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__31__a5/
%G en
%F ETNA_2008__31__a5
Schwetlick, Hubert; Schreiber, Kathrin. A counterexample for characterizing an invariant subspace of a matrix. Electronic transactions on numerical analysis, Tome 31 (2008), pp. 295-305. http://geodesic.mathdoc.fr/item/ETNA_2008__31__a5/