Structured low rank approximations of the sylvester resultant matrix for approximate GCDS of Bernstein basis polynomials
Electronic transactions on numerical analysis, Tome 31 (2008), pp. 141-155.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A structured low rank approximation of the Sylvester resultant matrix $S(f, g)$ of the Bernstein basis polynomials f = f (y) and $g = g(y)$, for the determination of their approximate greatest common divisors (GCDs), is computed using the method of structured total least norm. Since the GCD of f (y) and $g(y)$ is equal to the GCD of f (y) and $\alpha g(y)$, where $\alpha $is an arbitrary non-zero constant, it is more appropriate to consider a structured low rank approximation $S( \tilde f , \tilde g)$ of $S(f, \alpha g)$, where the polynomials $\tilde f = \tilde f$ (y) and $\tilde g = \tilde g(y)$ approximate the polynomials f (y) and $\alpha g(y)$, respectively. Different values of $\alpha $yield different structured low rank approximations $S( \tilde f , \tilde g)$, and therefore different approximate GCDs. It is shown that the inclusion of $\alpha $allows to obtain considerably improved approximations, as measured by the decrease of the singular values $\sigma i$ of $S( \tilde f , \tilde g)$, with respect to the approximation obtained when the default value $\alpha = 1$ is used. An example that illustrates the theory is presented and future work is discussed.
Classification : 15A12, 65F35
Keywords: Bernstein polynomials, structured low rank approximation, sylvester resultant matrix
@article{ETNA_2008__31__a13,
     author = {Winkler, Joab R. and Allan, John D.},
     title = {Structured low rank approximations of the sylvester resultant matrix for approximate {GCDS} of {Bernstein} basis polynomials},
     journal = {Electronic transactions on numerical analysis},
     pages = {141--155},
     publisher = {mathdoc},
     volume = {31},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__31__a13/}
}
TY  - JOUR
AU  - Winkler, Joab R.
AU  - Allan, John D.
TI  - Structured low rank approximations of the sylvester resultant matrix for approximate GCDS of Bernstein basis polynomials
JO  - Electronic transactions on numerical analysis
PY  - 2008
SP  - 141
EP  - 155
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__31__a13/
LA  - en
ID  - ETNA_2008__31__a13
ER  - 
%0 Journal Article
%A Winkler, Joab R.
%A Allan, John D.
%T Structured low rank approximations of the sylvester resultant matrix for approximate GCDS of Bernstein basis polynomials
%J Electronic transactions on numerical analysis
%D 2008
%P 141-155
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__31__a13/
%G en
%F ETNA_2008__31__a13
Winkler, Joab R.; Allan, John D. Structured low rank approximations of the sylvester resultant matrix for approximate GCDS of Bernstein basis polynomials. Electronic transactions on numerical analysis, Tome 31 (2008), pp. 141-155. http://geodesic.mathdoc.fr/item/ETNA_2008__31__a13/