Minimal degree rational unimodular interpolation on the unit circle
Electronic transactions on numerical analysis, Tome 30 (2008), pp. 88-106.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider an interpolation problem with distinct nodes and interpolation values $\textcent \sterling $########$${\S}$$###$\copyright \ddot \copyright \ddot \ddot \copyright $###$\sterling \textcent $ , all on the complex unit circle, and seek interpolants of minimal degree in the class consisting of ######$\ddot \ddot \copyright \ddot $###$ \sterling $! ratios of finite Blaschke products. The focus is on the so-called damaged cases where the interpolant of minimal degree is non-uniquely determined. This paper is a continuation of the work in Glader [Comput. Methods Funct.
Classification : 30D50, 35E05
Keywords: rational interpolation, Blaschke product, Nevanlinna parametrization
@article{ETNA_2008__30__a19,
     author = {Glader, Christer},
     title = {Minimal degree rational unimodular interpolation on the unit circle},
     journal = {Electronic transactions on numerical analysis},
     pages = {88--106},
     publisher = {mathdoc},
     volume = {30},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__30__a19/}
}
TY  - JOUR
AU  - Glader, Christer
TI  - Minimal degree rational unimodular interpolation on the unit circle
JO  - Electronic transactions on numerical analysis
PY  - 2008
SP  - 88
EP  - 106
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__30__a19/
LA  - en
ID  - ETNA_2008__30__a19
ER  - 
%0 Journal Article
%A Glader, Christer
%T Minimal degree rational unimodular interpolation on the unit circle
%J Electronic transactions on numerical analysis
%D 2008
%P 88-106
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__30__a19/
%G en
%F ETNA_2008__30__a19
Glader, Christer. Minimal degree rational unimodular interpolation on the unit circle. Electronic transactions on numerical analysis, Tome 30 (2008), pp. 88-106. http://geodesic.mathdoc.fr/item/ETNA_2008__30__a19/