Low-rank iterative methods for projected generalized Lyapunov equations
Electronic transactions on numerical analysis, Tome 30 (2008), pp. 187-202.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We generalize an alternating direction implicit method and the Smith method for large-scale projected generalized Lyapunov equations. Such equations arise in model reduction of descriptor systems. Low-rank versions of these methods are also presented, which can be used to compute low-rank approximations to the solution of projected generalized Lyapunov equations with low-rank symmetric, positive semidefinite right-hand side. Numerical examples are presented.
Classification : 65F10, 65F30, 15A22, 15A24
Keywords: projected generalized Lyapunov equations, alternating direction implicit method, smith method, low-rank approximation
@article{ETNA_2008__30__a14,
     author = {Stykel, Tatjana},
     title = {Low-rank iterative methods for projected generalized {Lyapunov} equations},
     journal = {Electronic transactions on numerical analysis},
     pages = {187--202},
     publisher = {mathdoc},
     volume = {30},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__30__a14/}
}
TY  - JOUR
AU  - Stykel, Tatjana
TI  - Low-rank iterative methods for projected generalized Lyapunov equations
JO  - Electronic transactions on numerical analysis
PY  - 2008
SP  - 187
EP  - 202
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__30__a14/
LA  - en
ID  - ETNA_2008__30__a14
ER  - 
%0 Journal Article
%A Stykel, Tatjana
%T Low-rank iterative methods for projected generalized Lyapunov equations
%J Electronic transactions on numerical analysis
%D 2008
%P 187-202
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__30__a14/
%G en
%F ETNA_2008__30__a14
Stykel, Tatjana. Low-rank iterative methods for projected generalized Lyapunov equations. Electronic transactions on numerical analysis, Tome 30 (2008), pp. 187-202. http://geodesic.mathdoc.fr/item/ETNA_2008__30__a14/