Derivation of high-order spectral methods for time-dependent PDE using modified moments
Electronic transactions on numerical analysis, Tome 28 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper presents a reformulation of Krylov Subspace Spectral (KSS) Methods, which build on Gene Golub's many contributions pertaining to moments and Gaussian quadrature, to produce high-order accurate approximate solutions to variable-coefficient time-dependent PDE. This reformulation serves two useful purposes.
Classification : 65M12, 65M70, 65D32
Keywords: spectral methods, Gaussian quadrature, variable-coefficient, Lanczos method, stability, heat equation, wave equation
@article{ETNA_2008__28__a6,
     author = {Lambers, James V.},
     title = {Derivation of high-order spectral methods for time-dependent {PDE} using modified moments},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {28},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__28__a6/}
}
TY  - JOUR
AU  - Lambers, James V.
TI  - Derivation of high-order spectral methods for time-dependent PDE using modified moments
JO  - Electronic transactions on numerical analysis
PY  - 2008
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__28__a6/
LA  - en
ID  - ETNA_2008__28__a6
ER  - 
%0 Journal Article
%A Lambers, James V.
%T Derivation of high-order spectral methods for time-dependent PDE using modified moments
%J Electronic transactions on numerical analysis
%D 2008
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__28__a6/
%G en
%F ETNA_2008__28__a6
Lambers, James V. Derivation of high-order spectral methods for time-dependent PDE using modified moments. Electronic transactions on numerical analysis, Tome 28 (2008). http://geodesic.mathdoc.fr/item/ETNA_2008__28__a6/