Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem
Electronic transactions on numerical analysis, Tome 28 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we consider the computation of a finite eigenvalue and corresponding right eigenvector of a large sparse generalised eigenproblem $Ax = \lambda $Mx using inexact inverse iteration. Our convergence theory is quite general and requires few assumptions on A and M. In particular, there is no need for M to be symmetric positive definite or even nonsingular. The theory includes both fixed and variable shift strategies, and the bounds obtained are improvements on those currently in the literature. In addition, the analysis developed here is used to provide a convergence theory for a version of inexact simplified Jacobi-Davidson. Several numerical examples are presented to illustrate the theory: including applications in nuclear reactor stability, with M singular and nonsymmetric, the linearised Navier-Stokes equations and the bounded finline dielectric waveguide.
Classification : 65F15, 15A18, 65F50
Keywords: inexact inverse iteration, nonsymmetric generalised eigenproblem
@article{ETNA_2008__28__a10,
     author = {Freitag, Melina A. and Spence, Alastair},
     title = {Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {28},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__28__a10/}
}
TY  - JOUR
AU  - Freitag, Melina A.
AU  - Spence, Alastair
TI  - Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem
JO  - Electronic transactions on numerical analysis
PY  - 2008
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__28__a10/
LA  - en
ID  - ETNA_2008__28__a10
ER  - 
%0 Journal Article
%A Freitag, Melina A.
%A Spence, Alastair
%T Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem
%J Electronic transactions on numerical analysis
%D 2008
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__28__a10/
%G en
%F ETNA_2008__28__a10
Freitag, Melina A.; Spence, Alastair. Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem. Electronic transactions on numerical analysis, Tome 28 (2008). http://geodesic.mathdoc.fr/item/ETNA_2008__28__a10/