Quantum dynamical entropy and an algorithm by gene golub
Electronic transactions on numerical analysis, Tome 28 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The problem of computing the quantum dynamical entropy introduced by Alicki and Fannes requires the trace of the operator function F $(\Omega ) = - \Omega \log \Omega $, where $\Omega $is a non-negative, Hermitean operator. Physical significance demands that this operator be a matrix of large order. We study its properties and we derive efficient algorithms to solve this problem, also implementable on parallel machines with distributed memory. We rely on a Lanczos technique for large matrix computations developed by Gene Golub.
Classification : 65F10, 37M25, 81Q50
Keywords: quantum dynamical entropy, large matrices, Lanczos method, montecarlo techniques
@article{ETNA_2008__28__a1,
     author = {Mantica, Giorgio},
     title = {Quantum dynamical entropy and an algorithm by gene golub},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {28},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2008__28__a1/}
}
TY  - JOUR
AU  - Mantica, Giorgio
TI  - Quantum dynamical entropy and an algorithm by gene golub
JO  - Electronic transactions on numerical analysis
PY  - 2008
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2008__28__a1/
LA  - en
ID  - ETNA_2008__28__a1
ER  - 
%0 Journal Article
%A Mantica, Giorgio
%T Quantum dynamical entropy and an algorithm by gene golub
%J Electronic transactions on numerical analysis
%D 2008
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2008__28__a1/
%G en
%F ETNA_2008__28__a1
Mantica, Giorgio. Quantum dynamical entropy and an algorithm by gene golub. Electronic transactions on numerical analysis, Tome 28 (2008). http://geodesic.mathdoc.fr/item/ETNA_2008__28__a1/