Factorization of the hypergeometric-type difference equation on the uniform lattice
Electronic transactions on numerical analysis, Tome 27 (2007), pp. 34-50.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We discuss factorization of the hypergeometric-type difference equations on the uniform lattices and show how one can construct a dynamical algebra, which corresponds to each of these equations. Some examples are exhibited, in particular, we show that several models of discrete harmonic oscillators, previously considered in a number of publications, can be treated in a unified form.
Classification : 33C45, 33C90, 39A13
Keywords: discrete polynomials, factorization method, discrete oscillators
@article{ETNA_2007__27__a9,
     author = {\'Alvarez-Nodarse, R. and Atakishiyev, N.M. and Costas-Santos, R.S.},
     title = {Factorization of the hypergeometric-type difference equation on the uniform lattice},
     journal = {Electronic transactions on numerical analysis},
     pages = {34--50},
     publisher = {mathdoc},
     volume = {27},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2007__27__a9/}
}
TY  - JOUR
AU  - Álvarez-Nodarse, R.
AU  - Atakishiyev, N.M.
AU  - Costas-Santos, R.S.
TI  - Factorization of the hypergeometric-type difference equation on the uniform lattice
JO  - Electronic transactions on numerical analysis
PY  - 2007
SP  - 34
EP  - 50
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2007__27__a9/
LA  - en
ID  - ETNA_2007__27__a9
ER  - 
%0 Journal Article
%A Álvarez-Nodarse, R.
%A Atakishiyev, N.M.
%A Costas-Santos, R.S.
%T Factorization of the hypergeometric-type difference equation on the uniform lattice
%J Electronic transactions on numerical analysis
%D 2007
%P 34-50
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2007__27__a9/
%G en
%F ETNA_2007__27__a9
Álvarez-Nodarse, R.; Atakishiyev, N.M.; Costas-Santos, R.S. Factorization of the hypergeometric-type difference equation on the uniform lattice. Electronic transactions on numerical analysis, Tome 27 (2007), pp. 34-50. http://geodesic.mathdoc.fr/item/ETNA_2007__27__a9/