Left-definite variations of the classical Fourier expansion theorem
Electronic transactions on numerical analysis, Tome 27 (2007), pp. 124-139.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a recent paper, Littlejohn and Wellman developed a general left-definite theory for arbitrary selfadjoint operators in a Hilbert space that are bounded below by a positive constant. We apply this theory and construct the sequences of left-definite Hilbert spaces and left-definite self-adjoint operators associated $\sterling $########$${\S}$$###$\copyright \ddot \sterling $###$\ddot $### ###$$ with the classical, regular self-adjoint boundary value problem consisting of the Fourier equation with periodic boundary conditions. As a particular consequence of our analysis, we obtain a Fourier expansion theorem in each left-definite space as well as an explicit representation of the domain of $$###$"!# for each positive integer .$
Classification : 34B24, 33B10
Keywords: self-adjoint operator, Hilbert space, left-definite Hilbert space, left-definite operator, regular selfadjoint boundary value problem, Fourier series
@article{ETNA_2007__27__a3,
     author = {Littlejohn, L.L. and Zettl, A.},
     title = {Left-definite variations of the classical {Fourier} expansion theorem},
     journal = {Electronic transactions on numerical analysis},
     pages = {124--139},
     publisher = {mathdoc},
     volume = {27},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2007__27__a3/}
}
TY  - JOUR
AU  - Littlejohn, L.L.
AU  - Zettl, A.
TI  - Left-definite variations of the classical Fourier expansion theorem
JO  - Electronic transactions on numerical analysis
PY  - 2007
SP  - 124
EP  - 139
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2007__27__a3/
LA  - en
ID  - ETNA_2007__27__a3
ER  - 
%0 Journal Article
%A Littlejohn, L.L.
%A Zettl, A.
%T Left-definite variations of the classical Fourier expansion theorem
%J Electronic transactions on numerical analysis
%D 2007
%P 124-139
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2007__27__a3/
%G en
%F ETNA_2007__27__a3
Littlejohn, L.L.; Zettl, A. Left-definite variations of the classical Fourier expansion theorem. Electronic transactions on numerical analysis, Tome 27 (2007), pp. 124-139. http://geodesic.mathdoc.fr/item/ETNA_2007__27__a3/