Optimal grids for anisotropic problems
Electronic transactions on numerical analysis, Tome 26 (2007), pp. 55-81.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Spectral convergence of optimal grids for anisotropic problems is both numerically observed and explained. For elliptic problems, the gridding algorithm is reduced to a Stieltjes rational approximation on an interval of a line in the complex plane instead of the real axis as in the isotropic case. We show rigorously why this occurs for a semi-infinite and bounded interval. We then extend the gridding algorithm to hyperbolic problems on bounded domains. For the propagative modes, the problem is reduced to a rational approximation on an interval of the negative real semiaxis, similarly to in the isotropic case. For the wave problem we present numerical examples in 2-D anisotropic media.
Classification : 65M06, 65N06
Keywords: finite differences, dtn maps, anisotropy, spectral approximation
@article{ETNA_2007__26__a22,
     author = {Asvadurov, S. and Druskin, V. and Moskow, S.},
     title = {Optimal grids for anisotropic problems},
     journal = {Electronic transactions on numerical analysis},
     pages = {55--81},
     publisher = {mathdoc},
     volume = {26},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2007__26__a22/}
}
TY  - JOUR
AU  - Asvadurov, S.
AU  - Druskin, V.
AU  - Moskow, S.
TI  - Optimal grids for anisotropic problems
JO  - Electronic transactions on numerical analysis
PY  - 2007
SP  - 55
EP  - 81
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2007__26__a22/
LA  - en
ID  - ETNA_2007__26__a22
ER  - 
%0 Journal Article
%A Asvadurov, S.
%A Druskin, V.
%A Moskow, S.
%T Optimal grids for anisotropic problems
%J Electronic transactions on numerical analysis
%D 2007
%P 55-81
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2007__26__a22/
%G en
%F ETNA_2007__26__a22
Asvadurov, S.; Druskin, V.; Moskow, S. Optimal grids for anisotropic problems. Electronic transactions on numerical analysis, Tome 26 (2007), pp. 55-81. http://geodesic.mathdoc.fr/item/ETNA_2007__26__a22/