Theory and numerics for multi-term periodic delay differential equations: small solutions and their detection
Electronic transactions on numerical analysis, Tome 26 (2007), pp. 474-483.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we consider scalar linear periodic delay differential equations of the form $\textcent $###$\sterling $########$\ddot $§###$\copyright $###$\ddot $§###$\copyright "\textcent #$###${\S}\%'\)(0\copyright 21###$textcent#$###$§###$\copyright 3$546###${\S}###$©$ for {\S}87@9 AB1$$###$$CD($0©21$#{\S}8EFCD(G$$###$$"HI$©$! where , \@PAB1RQSQSQS1TC are continuous periodic functions with period ( . We summarise a theoretical treatment that analyses whether the equation has small solutions. We consider discrete equations that arise when a numerical method with fixed step-size is applied to approximate the solution to (H ) and we develop a corresponding theory.$
Classification : 34K28, 65P99, 37N30
Keywords: delay differential equations, small solutions, super-exponential solutions, numerical methods
@article{ETNA_2007__26__a0,
     author = {Ford, Neville J. and Lumb, Patricia M.},
     title = {Theory and numerics for multi-term periodic delay differential equations: small solutions and their detection},
     journal = {Electronic transactions on numerical analysis},
     pages = {474--483},
     publisher = {mathdoc},
     volume = {26},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2007__26__a0/}
}
TY  - JOUR
AU  - Ford, Neville J.
AU  - Lumb, Patricia M.
TI  - Theory and numerics for multi-term periodic delay differential equations: small solutions and their detection
JO  - Electronic transactions on numerical analysis
PY  - 2007
SP  - 474
EP  - 483
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2007__26__a0/
LA  - en
ID  - ETNA_2007__26__a0
ER  - 
%0 Journal Article
%A Ford, Neville J.
%A Lumb, Patricia M.
%T Theory and numerics for multi-term periodic delay differential equations: small solutions and their detection
%J Electronic transactions on numerical analysis
%D 2007
%P 474-483
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2007__26__a0/
%G en
%F ETNA_2007__26__a0
Ford, Neville J.; Lumb, Patricia M. Theory and numerics for multi-term periodic delay differential equations: small solutions and their detection. Electronic transactions on numerical analysis, Tome 26 (2007), pp. 474-483. http://geodesic.mathdoc.fr/item/ETNA_2007__26__a0/