On the exact estimates of the best spline approximations of functions
Electronic transactions on numerical analysis, Tome 25 (2006), pp. 446-453.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In the paper the exact (in the sense of the order of smallness) estimates of the best spline approximations of functions of one variable from different functional classes on a finite segment in uniform and integral metrics are obtained.
Classification : 41A15
Keywords: spline, polynomial spline, best spline approximation, uniform and integral metrics, class of convex function, class of function with convex derivatives, class of function with generalized finite variation, module of continuity, module of variation, spline of the minimal defect with free knots
@article{ETNA_2006__25__a4,
     author = {Khatamov, Akhtam},
     title = {On the exact estimates of the best spline approximations of functions},
     journal = {Electronic transactions on numerical analysis},
     pages = {446--453},
     publisher = {mathdoc},
     volume = {25},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__25__a4/}
}
TY  - JOUR
AU  - Khatamov, Akhtam
TI  - On the exact estimates of the best spline approximations of functions
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 446
EP  - 453
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__25__a4/
LA  - en
ID  - ETNA_2006__25__a4
ER  - 
%0 Journal Article
%A Khatamov, Akhtam
%T On the exact estimates of the best spline approximations of functions
%J Electronic transactions on numerical analysis
%D 2006
%P 446-453
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__25__a4/
%G en
%F ETNA_2006__25__a4
Khatamov, Akhtam. On the exact estimates of the best spline approximations of functions. Electronic transactions on numerical analysis, Tome 25 (2006), pp. 446-453. http://geodesic.mathdoc.fr/item/ETNA_2006__25__a4/