A remark on uniqueness of best rational approximants of degree 1 in $L^2$ of the circle
Electronic transactions on numerical analysis, Tome 25 (2006), pp. 54-66.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We derive a criterion for uniqueness of a critical point in rational approximation of degree 1.
Classification : 31A25, 30E10, 30E25, 35J05
Keywords: rational approximation, uniqueness, Hardy spaces, critical points
@article{ETNA_2006__25__a28,
     author = {Baratchart, L.},
     title = {A remark on uniqueness of best rational approximants of degree 1 in $L^2$ of the circle},
     journal = {Electronic transactions on numerical analysis},
     pages = {54--66},
     publisher = {mathdoc},
     volume = {25},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__25__a28/}
}
TY  - JOUR
AU  - Baratchart, L.
TI  - A remark on uniqueness of best rational approximants of degree 1 in $L^2$ of the circle
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 54
EP  - 66
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__25__a28/
LA  - en
ID  - ETNA_2006__25__a28
ER  - 
%0 Journal Article
%A Baratchart, L.
%T A remark on uniqueness of best rational approximants of degree 1 in $L^2$ of the circle
%J Electronic transactions on numerical analysis
%D 2006
%P 54-66
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__25__a28/
%G en
%F ETNA_2006__25__a28
Baratchart, L. A remark on uniqueness of best rational approximants of degree 1 in $L^2$ of the circle. Electronic transactions on numerical analysis, Tome 25 (2006), pp. 54-66. http://geodesic.mathdoc.fr/item/ETNA_2006__25__a28/