An integral representation of some hypergeometric functions
Electronic transactions on numerical analysis, Tome 25 (2006), pp. 115-120.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Euler integral representation of the Gauss hypergeometric function is well known and plays $\sterling $########$${\S}$$###$$ a prominent role in the derivation of transformation identities and in the evaluation of , among other $\sterling $###$\copyright \ddot $### "! ### applications. The general hypergeometric function has an integral representation where the integrand #$\copyright \\%'$$###$$)(0$\\% involves . We give a simple and direct proof of an Euler integral representation for a special class of # ( ( (0 $#########\{0}#### functions for . The values of certain and functions at , some of which can be derived using 13254 $6\copyright $###$7\sterling 8\copyright $###$$96 @BA other methods, are deduced from our integral formula.
Classification : 15A15
Keywords: 3F2 hypergeometric functions, general hypergeometric functions, integral representation
@article{ETNA_2006__25__a25,
     author = {Driver, K.A. and Johnston, S.J.},
     title = {An integral representation of some hypergeometric functions},
     journal = {Electronic transactions on numerical analysis},
     pages = {115--120},
     publisher = {mathdoc},
     volume = {25},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__25__a25/}
}
TY  - JOUR
AU  - Driver, K.A.
AU  - Johnston, S.J.
TI  - An integral representation of some hypergeometric functions
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 115
EP  - 120
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__25__a25/
LA  - en
ID  - ETNA_2006__25__a25
ER  - 
%0 Journal Article
%A Driver, K.A.
%A Johnston, S.J.
%T An integral representation of some hypergeometric functions
%J Electronic transactions on numerical analysis
%D 2006
%P 115-120
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__25__a25/
%G en
%F ETNA_2006__25__a25
Driver, K.A.; Johnston, S.J. An integral representation of some hypergeometric functions. Electronic transactions on numerical analysis, Tome 25 (2006), pp. 115-120. http://geodesic.mathdoc.fr/item/ETNA_2006__25__a25/