Weighted approximation of derivatives on the half-line
Electronic transactions on numerical analysis, Tome 25 (2006), pp. 121-128.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Weighted polynomial approximation of derivatives on the half line is considered. The weight $\textcent \sterling $########$${\S}$$###$\copyright \ddot $function will be of the form , a "folded" Freud weight. That is, that , where is a Freud !#"%$'\(\ddot 0)213"\%4\ddot $56798@ weight on . Linear processes which can be used for approximation of derivatives include interpolation, in "BAC$$####\{D}#####\{E}####$$F$\ddot $particular using node-sets recently developed by J. Szabados.
Classification : 41A10, 41A05, 65D05
Keywords: freud weights, derivatives, weighted approximation
@article{ETNA_2006__25__a24,
     author = {Bal\'azs, Katherine and Kilgore, Theodore},
     title = {Weighted approximation of derivatives on the half-line},
     journal = {Electronic transactions on numerical analysis},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {25},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__25__a24/}
}
TY  - JOUR
AU  - Balázs, Katherine
AU  - Kilgore, Theodore
TI  - Weighted approximation of derivatives on the half-line
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 121
EP  - 128
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__25__a24/
LA  - en
ID  - ETNA_2006__25__a24
ER  - 
%0 Journal Article
%A Balázs, Katherine
%A Kilgore, Theodore
%T Weighted approximation of derivatives on the half-line
%J Electronic transactions on numerical analysis
%D 2006
%P 121-128
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__25__a24/
%G en
%F ETNA_2006__25__a24
Balázs, Katherine; Kilgore, Theodore. Weighted approximation of derivatives on the half-line. Electronic transactions on numerical analysis, Tome 25 (2006), pp. 121-128. http://geodesic.mathdoc.fr/item/ETNA_2006__25__a24/