The circle theorem and related theorems for Gauss-type quadrature rules
Electronic transactions on numerical analysis, Tome 25 (2006), pp. 129-137.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In 1961, P.J. Davis and P. Rabinowitz established a beautiful "circle theorem" for Gauss and Gauss- Lobatto quadrature rules. They showed that, in the case of Jacobi weight functions, the Gaussian weights, suitably normalized and plotted against the Gaussian nodes, lie asymptotically for large orders on the upper half of the unit circle centered at the origin. Here analogous results are proved for rather more general weight functions-essentially those in the Szeg$\ddot o$ class-, not only for Gauss and Gauss-Lobatto, but also for Gauss-Radau formulae. For much more restricted classes of weight functions, the circle theorem even holds for Gauss-Kronrod rules. In terms of potential theory, the semicircle of the circle theorem can be interpreted as the reciprocal density of the equilibrium measure of the interval . Analogous theorems hold for weight functions supported on any compact subset $\textcent \sterling $########$${\S}$$###$\ddot $###$\copyright $ of , in which case the (normalized) Gauss points approach the reciprocal density of the equilibrium measure $\sterling $########$${\S}$$###$\ddot $###$$ of . Many of the results are illustrated graphically.$$
Classification : 65D32, 42C05
Keywords: Gauss quadrature formulae, circle theorem, Gauss-radau, Gauss-lobatto and Gauss-kronrod formulae, christoffel function, potential theory, equilibrium measure
@article{ETNA_2006__25__a23,
     author = {Gautschi, Walter},
     title = {The circle theorem and related theorems for {Gauss-type} quadrature rules},
     journal = {Electronic transactions on numerical analysis},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {25},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__25__a23/}
}
TY  - JOUR
AU  - Gautschi, Walter
TI  - The circle theorem and related theorems for Gauss-type quadrature rules
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 129
EP  - 137
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__25__a23/
LA  - en
ID  - ETNA_2006__25__a23
ER  - 
%0 Journal Article
%A Gautschi, Walter
%T The circle theorem and related theorems for Gauss-type quadrature rules
%J Electronic transactions on numerical analysis
%D 2006
%P 129-137
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__25__a23/
%G en
%F ETNA_2006__25__a23
Gautschi, Walter. The circle theorem and related theorems for Gauss-type quadrature rules. Electronic transactions on numerical analysis, Tome 25 (2006), pp. 129-137. http://geodesic.mathdoc.fr/item/ETNA_2006__25__a23/