Orthogonal polynomials and Ramanujan's $q$-continued fractions
Electronic transactions on numerical analysis, Tome 25 (2006), pp. 158-165.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give new and simple proofs to some famous -continued fraction identities of Ramanujan by $$###$$ using the theory of orthogonal polynomials.
Classification : 33C47, 11A55
Keywords: orthogonal polynomials, continued fraction
@article{ETNA_2006__25__a21,
     author = {Ismail, Mourad E.H. and Li, Xin},
     title = {Orthogonal polynomials and {Ramanujan's} $q$-continued fractions},
     journal = {Electronic transactions on numerical analysis},
     pages = {158--165},
     publisher = {mathdoc},
     volume = {25},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__25__a21/}
}
TY  - JOUR
AU  - Ismail, Mourad E.H.
AU  - Li, Xin
TI  - Orthogonal polynomials and Ramanujan's $q$-continued fractions
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 158
EP  - 165
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__25__a21/
LA  - en
ID  - ETNA_2006__25__a21
ER  - 
%0 Journal Article
%A Ismail, Mourad E.H.
%A Li, Xin
%T Orthogonal polynomials and Ramanujan's $q$-continued fractions
%J Electronic transactions on numerical analysis
%D 2006
%P 158-165
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__25__a21/
%G en
%F ETNA_2006__25__a21
Ismail, Mourad E.H.; Li, Xin. Orthogonal polynomials and Ramanujan's $q$-continued fractions. Electronic transactions on numerical analysis, Tome 25 (2006), pp. 158-165. http://geodesic.mathdoc.fr/item/ETNA_2006__25__a21/