On convergence of orthonormal expansions for exponential weights
Electronic transactions on numerical analysis, Tome 25 (2006), pp. 467-479.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let be a real interval, finite or infinite, and let . Assume that $\textcent $###$\sterling $########$\ddot $§$\copyright \copyright \textcent $### !####"$\\%' )( is a weight, so that we may define orthonormal polynomials corresponding to . For , let 0( 123\textcent 4 65 798A@ 1$B denote the th partial sum of the orthonormal expansion of with respect to these polynomials. We show that if C 1 , then as . The class of weights considered 1D#FEHGPI)$$###$$Q$\textcent $SR4G $$###$$T$\textcent $ UV$$###$$Q7 @ 1$BW{\S}X1W0U`Ybadcfe`gh i" Cp !\% 8 ( includes even exponential weights.$
Classification : 65N12, 65F35, 65J20, 65N55
Keywords: orthonormal polynomials, de la vall$\acute $ee poussin means
@article{ETNA_2006__25__a2,
     author = {Mashele, H.P.},
     title = {On convergence of orthonormal expansions for exponential weights},
     journal = {Electronic transactions on numerical analysis},
     pages = {467--479},
     publisher = {mathdoc},
     volume = {25},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__25__a2/}
}
TY  - JOUR
AU  - Mashele, H.P.
TI  - On convergence of orthonormal expansions for exponential weights
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 467
EP  - 479
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__25__a2/
LA  - en
ID  - ETNA_2006__25__a2
ER  - 
%0 Journal Article
%A Mashele, H.P.
%T On convergence of orthonormal expansions for exponential weights
%J Electronic transactions on numerical analysis
%D 2006
%P 467-479
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__25__a2/
%G en
%F ETNA_2006__25__a2
Mashele, H.P. On convergence of orthonormal expansions for exponential weights. Electronic transactions on numerical analysis, Tome 25 (2006), pp. 467-479. http://geodesic.mathdoc.fr/item/ETNA_2006__25__a2/