Systems of orthogonal polynomials defined by hypergeometric type equations
Electronic transactions on numerical analysis, Tome 24 (2006), pp. 45-54.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A hypergeometric type equation satisfying certain conditions defines either a finite or an infinite system of orthogonal polynomials. We present in a unified and explicit way all these systems of orthogonal polynomials, the associated special functions and the corresponding raising/lowering operators. This general formalism allows us to extend some known results to a larger class of functions.
Classification : 33C45, 81R05, 81R30
Keywords: orthogonal polynomials, associated special functions, raising operator, lowering operator, special functions
@article{ETNA_2006__24__a8,
     author = {Cotfas, Nicolae},
     title = {Systems of orthogonal polynomials defined by hypergeometric type equations},
     journal = {Electronic transactions on numerical analysis},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__24__a8/}
}
TY  - JOUR
AU  - Cotfas, Nicolae
TI  - Systems of orthogonal polynomials defined by hypergeometric type equations
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 45
EP  - 54
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__24__a8/
LA  - en
ID  - ETNA_2006__24__a8
ER  - 
%0 Journal Article
%A Cotfas, Nicolae
%T Systems of orthogonal polynomials defined by hypergeometric type equations
%J Electronic transactions on numerical analysis
%D 2006
%P 45-54
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__24__a8/
%G en
%F ETNA_2006__24__a8
Cotfas, Nicolae. Systems of orthogonal polynomials defined by hypergeometric type equations. Electronic transactions on numerical analysis, Tome 24 (2006), pp. 45-54. http://geodesic.mathdoc.fr/item/ETNA_2006__24__a8/