$q$-orthogonal polynomials related to the quantum group $U_q(\germ {so}(5))$
Electronic transactions on numerical analysis, Tome 24 (2006), pp. 74-78.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Orthogonal polynomials in two discrete variables related to finite-dimensional irreducible representations of the quantum algebra are studied. The polynomials we consider here can be treated as ! $\copyright $" #%$\"('\%){\S}) two-dimensional -analogs of Krawtchouk polynomials. Some properties of these polynomials are investigated: the 0 difference equation of the Sturm-Liouville type, the weight function, the corresponding eigenvalues including the explicit description of their multiplicities.$
Classification : 33D80, 33C45
Keywords: quantum group, discrete orthogonal polynomials, eigenvalues
@article{ETNA_2006__24__a5,
     author = {Rozenblyum, Alexander},
     title = {$q$-orthogonal polynomials related to the quantum group $U_q(\germ {so}(5))$},
     journal = {Electronic transactions on numerical analysis},
     pages = {74--78},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__24__a5/}
}
TY  - JOUR
AU  - Rozenblyum, Alexander
TI  - $q$-orthogonal polynomials related to the quantum group $U_q(\germ {so}(5))$
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 74
EP  - 78
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__24__a5/
LA  - en
ID  - ETNA_2006__24__a5
ER  - 
%0 Journal Article
%A Rozenblyum, Alexander
%T $q$-orthogonal polynomials related to the quantum group $U_q(\germ {so}(5))$
%J Electronic transactions on numerical analysis
%D 2006
%P 74-78
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__24__a5/
%G en
%F ETNA_2006__24__a5
Rozenblyum, Alexander. $q$-orthogonal polynomials related to the quantum group $U_q(\germ {so}(5))$. Electronic transactions on numerical analysis, Tome 24 (2006), pp. 74-78. http://geodesic.mathdoc.fr/item/ETNA_2006__24__a5/