Orthogonal least squares solutions for linear operators
Electronic transactions on numerical analysis, Tome 24 (2006), pp. 1-6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper solves the problem of finding, in a least squares sense, the coefficients of a series expansion of a function in terms of a chosen orthogonal basis from the knowledge not of the function itself but from the action of a linear operator upon it. The coefficiens are evaluated by inner product with a set of functions related to the orthogonal basis through the adjoint operator of the linear operator. Examples for both differential operators and integral ones as well as related properties are given.
Classification : 33C90, 33C47, 42C05, 42C15, 47A05
Keywords: orthogonal polynomials, linear operators, gradient operator, Radon transform
@article{ETNA_2006__24__a11,
     author = {Acosta, Eva},
     title = {Orthogonal least squares solutions for linear operators},
     journal = {Electronic transactions on numerical analysis},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__24__a11/}
}
TY  - JOUR
AU  - Acosta, Eva
TI  - Orthogonal least squares solutions for linear operators
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 1
EP  - 6
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__24__a11/
LA  - en
ID  - ETNA_2006__24__a11
ER  - 
%0 Journal Article
%A Acosta, Eva
%T Orthogonal least squares solutions for linear operators
%J Electronic transactions on numerical analysis
%D 2006
%P 1-6
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__24__a11/
%G en
%F ETNA_2006__24__a11
Acosta, Eva. Orthogonal least squares solutions for linear operators. Electronic transactions on numerical analysis, Tome 24 (2006), pp. 1-6. http://geodesic.mathdoc.fr/item/ETNA_2006__24__a11/