Weierstrass' theorem in weighted Sobolev spaces with $k$ derivatives: announcement of results
Electronic transactions on numerical analysis, Tome 24 (2006), pp. 103-107.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We characterize the set of functions which can be approximated by smooth functions and by polynomials with the norm % 132465 $$#############$$§$$########$\ddot \copyright ! "# $$#######################$$0 \(') for a wide range of (even non-bounded) weights \ 's. We allow a great deal of independence among the weights 7 \ 's.$$
Classification : 41A10, 46E35, 46G10
Keywords: Weierstrass' theorem, weight, Sobolev spaces, weighted Sobolev spaces
@article{ETNA_2006__24__a1,
     author = {Portilla, Ana and Quintana, Yamilet and Rodriguez, Jose M. and Touris, Eva},
     title = {Weierstrass' theorem in weighted {Sobolev} spaces with $k$ derivatives: announcement of results},
     journal = {Electronic transactions on numerical analysis},
     pages = {103--107},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__24__a1/}
}
TY  - JOUR
AU  - Portilla, Ana
AU  - Quintana, Yamilet
AU  - Rodriguez, Jose M.
AU  - Touris, Eva
TI  - Weierstrass' theorem in weighted Sobolev spaces with $k$ derivatives: announcement of results
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 103
EP  - 107
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__24__a1/
LA  - en
ID  - ETNA_2006__24__a1
ER  - 
%0 Journal Article
%A Portilla, Ana
%A Quintana, Yamilet
%A Rodriguez, Jose M.
%A Touris, Eva
%T Weierstrass' theorem in weighted Sobolev spaces with $k$ derivatives: announcement of results
%J Electronic transactions on numerical analysis
%D 2006
%P 103-107
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__24__a1/
%G en
%F ETNA_2006__24__a1
Portilla, Ana; Quintana, Yamilet; Rodriguez, Jose M.; Touris, Eva. Weierstrass' theorem in weighted Sobolev spaces with $k$ derivatives: announcement of results. Electronic transactions on numerical analysis, Tome 24 (2006), pp. 103-107. http://geodesic.mathdoc.fr/item/ETNA_2006__24__a1/