On extremal problems related to inverse balayage
Electronic transactions on numerical analysis, Tome 23 (2006), pp. 304-319.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose is a body in , is compact, and a unit measure on . Inverse balayage $\textcent \sterling $#############$\ddot $§$\copyright \textcent \textcent $refers to the question of whether there exists a measure supported inside such that and produce the same $$###$$ electrostatic field outside . Establishing a duality principle between two extremal problems, it is shown that such $\textcent $an inverse balayage exists if and only if "!$#\\% 4365\798A@ ')(021 1CBEDGFIHQPSRUT where the supremum is taken over all unit measures on and denotes the electrostatic potential of .$
Classification : 31A15, 30C85, 41A17
Keywords: logarithmic potential, Newtonian potential, balayage, inverse balayage, linear optimization, duality, chebychev constant, extremal problem
@article{ETNA_2006__23__a2,
     author = {G\"otz, Mario},
     title = {On extremal problems related to inverse balayage},
     journal = {Electronic transactions on numerical analysis},
     pages = {304--319},
     publisher = {mathdoc},
     volume = {23},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__23__a2/}
}
TY  - JOUR
AU  - Götz, Mario
TI  - On extremal problems related to inverse balayage
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 304
EP  - 319
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__23__a2/
LA  - en
ID  - ETNA_2006__23__a2
ER  - 
%0 Journal Article
%A Götz, Mario
%T On extremal problems related to inverse balayage
%J Electronic transactions on numerical analysis
%D 2006
%P 304-319
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__23__a2/
%G en
%F ETNA_2006__23__a2
Götz, Mario. On extremal problems related to inverse balayage. Electronic transactions on numerical analysis, Tome 23 (2006), pp. 304-319. http://geodesic.mathdoc.fr/item/ETNA_2006__23__a2/